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Free Vibrations and Sensitivity Analysis of a Defective Two
Degree-of-Freedom System

A. Luongo*
University of L’Aquila, L’Aquila 67040, Italy

Free oscillations of a two degree-of-freedom system with nonproportional damping are analyzed. By a sunitable
choice of parameters, a family of defective systems having a noncomplete set of eigenvectors is selected. Free motions
of underdamped and overdamped defective systems are studied in the four-dimensional state space, and their main
characteristics are discussed. In particular, the rate at which the trajectories are attracted by the eigenvectors is
determined. Small perturbations of order ¢ of the parameters are then considered, and asymptotic expressions for
the modified system eigensolutions are obtained. These allow qualitative discussion of thle effects of modifications
on the mechanical behavior of nearly defective systems. Marked sensitivities of order €2 or ¢4 are found. These
depend strongly on the damping magnitude. An extensive numerical analysis is performed.

I. Introduction

N structural dynamics it is by no means rare to encounter systems

having multiple eigenvalues. This does not pose any substantial
difficulties when the system is conservative, but it involves specific
problems when the system is nonconservative. Very often indeed,
the geometric multiplicity of the eigenvalue is less than the algebraic
multiplicity, and so the system has an incomplete set of eigenvectors,
insufficient to form a base for the state space. Systems of this type
are called defective.

The free evolution of defective systems is well known to per-
sons working in the automatic control or system theory field;
moreover, basic notions can be found in any good book on linear
algebra. However, in the author’s opinion, the problem is not suf-
ficiently known to the structural analyst. Indeed, it is common
practice to assume damping of proportional type, so that the eigen-
vectors coincide with those of the corresponding undamped sys-
tem (always forming a complete set), and defective systems cannot
occur.

Simple examples of defective mechanical systems can certainly
be given. First, a one degree-of-freedom (DOF) oscillator with criti-
cal damping ¢ = 1 is a defective system, since a unique eigenvector
{x, x} ={—wy, 1}is associated with the double eivenvalue A = —awy,
wyp being the natural undamped frequency of the oscillator; motion
then develops with a mixed algebraic-exponential time law. As a
second example let us consider a structure in the critical flutter con-
dition, in which two couples of imaginary eigenvalues A = *iw
coincide. Usually a unique couple of complex conjugate eigenvec-
tors exists, and so the solution is still algebraic exponential. A third,
more general, defective system can be constructed starting from a
conservative system having many close frequencies, e.g., a band
spectrum system. By introducing in suitable points several light
dampers and/or small follower forces, it is possible, in principle, to
render all of the eigenvalues in a band equal.

A conclusion can be drawn from previous examples; namely, if it
is fairly easy to build a defective system, it is equally easy to modify it
by varying the project parameters to make the system nondefective.
Therefore it is very important to know the modal sensitivities of
such a system to evaluate the eigensolutions of the modified system.
However, standard methods (e.g., treated in the book by Brandon')
fail in the defective case, and so it is necessary to resort to particular
techniques. The problem has been discussed by the author in Ref. 2,
where a perturbation algorithm for evaluating the eigenderivatives
of defective systems is proposed.
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The main aims of this paper are the following: 1) to show that
mechanical defective systems can really exist if nonconservative
forces are take into account; 2) to show that these systems are rep-
resented in the parameters space not by isolated points but rather by
curves or surfaces, i.e., they form one-parameter or multiparameter
families; 3) to discuss the main characteristics of these pathologi-
cal systems in connection with the strength of the nonconservative
forces; 4) to analyze the mechanical properties of nearly defective
systems by using sensitivity analysis. To this end use is made of
a simple model. The free vibrations of a two DOF oscillator with
nonproportional damping are studied. By appropriate selection of
parameters the system is made defective or nearly defective. Phase
space representations and eigenvalues loci are employed to discuss
its dynamical properties.

II. Equations of Motion
Let us consider the nonconservative two DOF system illustrated
in Fig. 1. It consists of two simple oscillators of stiffness k; and
mass m; (j = 1, 2), coupled by a linear damper of constant c. By
denoting by ¢; the displacement of the jth mass and defining the
following dimensionless parameters,

c

p=mfm >1, K =ky/ k1, {=—7—=— (D
2 klml
the equations of motion read
Gi1+20(G1—¢)+q=0
()]

M2 +28(g2 —q1) +kq2 =0

where the dot denotes ?ifferentiation with respect to the dimension-
less time t = (k;/m;)? f. Equations (2) can be put in matrix form

X = Ax 3
in which
x ={q1, ¢, q1, ‘12}T €]
is the 4 x 1 state vector and
-2z 2 -1 0
2 /w -2/ 0 —«/n
= )]
1 0 0 0
0 1 0 0

is the 4 x 4 dynamic matrix of the system.

The general solution of the equations of motion (3) can be ex-
pressed in terms of the eigensolutions of the matrix A. Here interest
is focused on the case in which the dynamic matrix 1) does not have
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a complete set of eigenvectors or 2) does, in fact, have a complete
set of eigenvectors, but some of them are nearly parallel. Systems
of type 1 will be referred to as defective, systems of type 2 as
nearly defective.

III. Defective Systems

The dynamic matrix (5) is a function of the three parameters,
Egs. (1),ie., A= A(u, «, ¢). For particular values pt = pp, K = Ko,
¢ = &, the matrix Ag = A(uo, ko, {o) has eigenvalues A, of alge-
braic multiplicity m > 1. If the associated geometric multiplicity »
is less than m, A is defective.

It is easy to check that if

Ho = (1+ &)/ (1 — &o), ko=1/po ©6)
Ay admits two double eigenvalues
—to i1 —-282
= ENVIZH gy 0

1+

a unique eigenvector

T
250A5; 2800k
Uy = 3 s MOk 7 1
1+ 2% or + Aok 14 2¢0hox + Ay,

k=1,2) ®)

being associated with each of them. Therefore matrix A, is defective.

By assuming, for example, {, as an independent variable, Eqs. (6)
select a one-parameter family of defective systems. It should be
noted that when ¢y — 0, then o — 1, k0 — 1, and Ay — =i; the
system degenerates into two uncoupled identical oscillators, i.e.,
a nondefective system. On the other hand, when {;, — 1, then
o — oo and kg — 0, i.e., the oscillator j = 2 degenerates into a
free mass of infinite magnitude.

From Egs. (7) it follows that 1) when 0 < o < +/2/2, there are
two complex conjugate double eigenvalues (underdamped system);
2) when +/2/2 < & < 1, there are two real double eigenvalues
(overdamped system); and 3) when & = &, = A/2/2, there is a
unique real quadruple eigenvalue (critically damped system).

Incases 1 and 2, m = 2 and n = 1 for each Ay (k = 1, 2). The
two eigenvectors u#y; do not form a base for the four-dimensional
space; however, it is possible to complete this base by determining
two generalized eigenvectors of order (or index) 2, uy;, that satisfy
the following equations (e.g., see Ref. 3)

(Ao — Aoe Duoe = uie k=1,2) )
Eigenvectors u 1 and uy; are said to constitute a chain of generalized
eigenvectors of length 2. Matrix U = [u13, 421, 412, u22] transforms
Ay by similarity into the Jordan canonical form, made of two 2 x 2
blocks on the diagonal. By solving the equations of motion in the
new base and then coming back to the original base, the following
general solution is determined:

2

x(t) = Zelmt[clkulk ~+ co (uar + tui)l (10)
k=1

Constants cj (j, k = 1, 2) are equal to the components of the vector
xo = x(0) in the base {u;.}. By denoting with {v;;} the reciprocal
base, formed by the generalized left eigenvectors, since uﬁ Vi =
8ij 8u, it ensues that ¢ = v¥, xo, where ()? denotes the transpose
conjugate and §;; is the Kronecker symbol.

In case 2 all quantities in Eq. (10) are real; in case 1 they are
complex, conjugate in twos: u ;3 = #;1, C2; = ;1. By omitting the
second index k = 1 and by posing Ay = oy + Ly, ¢; = a; exp(ip;),
and u; = y; + iz, Eq. (10) reads

x(1) = 2e™"{a; [y, cos(wot + 1) — z1 sin(wor + ¢1)]

+ax[ (2 + tyy) cos(wot + ¢2) — (22 + 121) sin(wot + ¢2)1}
(10)

Incase 3 itensues thatm = 4 and n = 1,i.e., aunique eigenvector

u; (by omitting the second index k& = 1) is associated with the

quadruple eigenvalue Aq. In this case three generalized eigenvectors
u; (j =2, 3, 4) have to be determined by the recurrent relations

(Ao —AoDuj =u;y (=234 (1

By proceeding as in the previous case, the following solution is '

obtained:

. 2
x(1) =" |:01u1 + co(up + tur) + 3 (u3 + tuy + Eul)

12 £
+C4<u4+tu3+ 5u2+ gu1>:| (12)

where ¢; = viH Xo and all quantities are real.

It should be noted that, in all cases, generalized eigenvectors are
not univocally determined by Eqgs. (9) or (11), since the operator
Ag — Xol is singular. However, arbitrary quantities can be avoided
by introducing a suitable chosen normalization condition, e.g., by
requiring all of the elements of a chain to be orthogonal to the first
element, i.e., uﬁ uy = 0 when j > 2. This condition has been
utilized before.

In the following the dynamics of the defective system are analyzed
for the cases previously described. Greater attention is paid to the
undercritical case, since this is the most important from a technical
point of view.

A. Undercritical Damping

The analytical expressions of the generalized eigenvectors are
rather involved, and so it is better to evaluate them numerically.
However, when ¢, <« 1, itis possible to obtain the following simple
asymptotic solution:

-1 1—i
i -1—i 2
w=| ;l+n| o [+0(8) (13a)
1 0
i —1+i
| | 1 1
Uz = % 1 + 5 — + 0@o) (13b)
1+2i

By assembling matrix U = [u, u,, i, #;] and inverting it, matrix
VH = [, vl 5 51 = U~ is obtained, where

-1 —1
1 i ;0 i 2
=gl |+ 7| |t 0(z)
1 i
(14)
i ) 1—i
;0 -1 C() -1+ 3
i —2i

are the left generalized eigenvectors; v, is the proper left eigenvector.

Expansions (13) show that u; and u, coincide with the proper
eigenvectors of the nondefective degenerate system ¢ = 0, if only
the leading terms of the expansions are considered. In addition it is
seen that |u || = (a1, u1)2 = O(1) and ||uz|| = O(;O"‘), and thus
fluz]| = oo when ¢ — 0. However, if Egs. (10") are considered,
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Fig. 2 Underdamped system: a) amplitude-decaying periodic motion
and b) nonperiodic motions.

constants g; = llvfxoll are found to be a; = O(1) and a, = O()
if |lxo]] = O(1); thus the two terms in the square brackets are of the
same order, and the solution tends correctly to the solution of the
nondefective system when §o — 0 and t < O(¢; ™).

Equation (10) shows that a unique mode exists, depending on
four arbitrary constants. The motion is a sum of two component
motions: the first one, of amplitude ¢,, is an amplitude decaying
(g < 0) periodic motion, the trajectory of which is a spiral lying
on the plane spanned by y, and z;; the other one, of amplitude a;, is
an aperiodic motion whose trajectory runs through the whole four-
dimensional state space. However, this trajectory tends to the plane
(31, 21) for t — o0, although the tendency is weak, of polynomial
type, compared with the exponential decay of the motion. Because
of the order of magnitude of u; and u, the distance of the trajectory
from the plane comes to be of order ¢, when t = O(¢, 3.

The projections on the plane (g, ¢,) of two trajectories of the
previously described types are shown in Fig. 2. In Fig. 2a it is ap-
parent that, according to Eq. (13a), ¢; and ¢, are shifted /2 rad
out of phase. In Fig. 2b it is noted that the trajectory tends to as-
sume a shape similar to the previous one, after having exhausted a
transient phase.

B. Critical and Overcritical Damping

In the overcritical case the law of motion is given by Eq. (10).
There are two modes (k = 1, 2), each depending on two arbitrary
constants. Each mode is a sum of a monodimensional motion ex-
ponentially decaying and a bidimensional motion decaying with an
algebraic-exponential law.
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Fig.4 Critically damped system motions: a) configurations plane and
b) velocities plane.
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In Fig. 3 the proper eigenvectors #1; and u#;, (solid lines) and
the order-two generalized eigenvectors u,; and uz, (dashed lines)
of an overdamped system are represented on the plane (g, ¢2).
Some trajectories arising from points belonging to the dashed lines
are also plotted. All of the trajectories are attracted by the proper
eigenvectors.

In the critical case the motion is described by Eq. (12), and a
unique mode dependent on four arbitrary constants exists. Motion
is a sum of four component motions, developing in subspaces of
increasing dimensions. The four generalized eigenvectors are rep-
resented in Fig. 4a on the (g1, ¢») plane and in Fig. 4b on the
(41, g2) plane; in the configuration plane, u3 and u4 have the same
components. All of the motions arising from points along the gen-
eralized eigenvector directions are slowly attracted by the unique
proper eigenvector.

IV. Nearly Defective Systems

Let us now perturb the values of the parameters that make the
system defective, i.e., let

= po+epr, K = ko + ki, =4 +en (15)
where ¢ « 1 is a perturbation parameter. It will be supposed here
that matrix A[p(€), k (¢), £ (¢)] = A(¢) is nondefective forany ¢ # 0
in the interval of interest.

The equations of motion (3) admit particular solutions x(t) =
wy exp(Art), where w; and A, are eigensolutions of A:

(A—2Dwp =0 (16)

Since, by hypothesis, the set wy is complete, the general solution of
Egs. (3) reads

nr

nie
x(t) = Zakyke”"’ + ZZake“"’
=1

k=1
x [y cos(wit + @r) — 2k sinayt + ¢r)] a7

where A, = o + iy, wy = Y, + iz, B, is the number of real
eigenvalues, and 2#, is the number of complex conjugate eigenval-
ues, with n, + 2n, = 4. The arbitrary constants are determined by
the initial conditions, as a;exp(igy) = v,f’ Xxo, where v, is the kth
(proper) left eigenvalue of A.

The eigensolutions of matrix A(g) are themselves a function of .
Obviously they could be easily determined numerically for various
g, as the dimensions of the problem in question are very small.
However, in more general cases, it is much more convenient to
evaluate their derivatives at ¢ = 0 (modal sensitivities) and then
extrapolate their values for ¢ # 0 by means of Taylor’s expansion.
If this way is chosen, as a first step matrix A(e) must be expanded
around ¢ = O:

A=Ap+eA +6*Ar+--- 18)

then w(¢) and A(¢) must themselves be expanded around an eigen-
solution of Ay. However, since A, is defective, standard methods
employing expansions of integer powers of ¢ fail and specific tech-
niques must be adopted. The general problem has been solved by the
author in Ref. 2 by using series expansions of noninteger powers of
the perturbation parameter, according to ideas contained in Refs. 4
and 5. The algorithm proposed allows the consideration of general
modifications, provided they depend on a unique parameter, and
therefore generalizes the (exact) method of Pomazal and Snyder®
that studies only the local modification problem. Here the simplest
case of a defective system occurs, i.e., the case in which only a chain
of generalized eigenvectors is associated with a multiple eigenvalue.
It is sufficient, therefore, to expand the eigensolutions in series of
&!/m where m is the algebraic multiplicity of Ao = A(0). Both not
critically damped and critically damped defective systems are stud-
ied next.

A. Not Critically Damped Systems
In this case m = 2; the following expansion is then performed:

Ap = )w()ké‘%)»lk + &dxy + 0(8%) (192)
Wi = wot + 82 wyswy + O(e?) (19b)
where. (Ao, wWo, = u1,), is the kth eigensolution (k = 1, 2) of the

unperturbed system. By using Egs. (16), (18), and (19), the following
perturbation equations are derived:

e:(Ag — XDwy =0 (20a)
31 (Ag — AgD)w; = Awo (20b)
£ (Ao - )\.()I)wz = )qwl + ).211)0 - A1w0 (200)

8% (Ap — ApDws = Aws + dow; + A.3‘U)0 - Alwl (20(1)

where, for simplicity, index k& has been omitted. Since each of
Eqs. (20) admits oo! solutions, the normalization conditions u{’ w;
=0( =1, 2,...) are added to them to determine the arbi-
trary constants.

Equation (20a) is satisfied. By using Eq. (9), w; = Aju, is ob-
tained from Eq. (20b). Equation (20c) then reads

(Ao — 2oDwy = Aluy — Ayuy + Aquy @n

For the solvability of this equation, the right hand member must be
made orthogonal to the (proper) left eigenvector v,. Bearing in mind
that v u, = 1 and vu; = 0, then

M= (v A 22)

from which two complex roots A; are obtained. Then, by solv-
ing Eq. (21).

wy = Wy + Agliy (23)
is obtained, where i is the (unique) solution of the problem
(Ao — 2Dy = A2uy — Ajuy
uflid, =0 24

By substituting the results in Eq. (20d), from the solvability condi-
tion

Ay = (UfAluz - vzHﬁ)g)/z (25)

is derived. To summarize: any eigenvalue Ay of the unperturbed
defective system generates two eigenvalues of the perturbed non-
defective system. The eigenvectors lie on the complex plane
near a circumference of center Ay and radius of order e%. The
eigenvalues are nearly parallel and differ from the generator
eigenvector u; by small quantities of order 63 along the u, di-
rection. It should be noted that these differences do not depend
on the perturbation shape matrix A;, which in fact appears only
at the & order. The system exhibits high modal sensitivity of
order 3. .

The two-term solution (second order or £2) determined in this
way usually furnishes a good quantitative approximation of the exact
solution of Egs. (16) (see Ref. 2). It requires knowledge of the
generalized eigenvectors of Ay that are only known numerically.
However, use can be made of the asymptotic expressions (13) and
(14) to obtain qualitative information, although strictly valid only
for &y — 0. By proceeding in this manner, the following points can
be made:

1) Since fju2t = Oo), Jurll = O(1), and || A || = O(1), from

Egs. (22) then Ay = O(;‘oi), Thus, the sensitivity of the eigen-
values depends on the magnitude of the nonconservative com-
ponent of the system. Weakly nonconservative defective systems
(o < 1) exhibit marked sensitivity only in a small neighborhood
of ¢ = 0, and so they can be classified as moderately sensitive
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systems. On the contrary, moderately or strongly nonconservative
defective systems manifest high sensitivity in a larger neighborhood
of ¢ = 0; therefore they can be classified as strongly sensitive to
perturbations.

1

2) Remembering that A; = O(;'Of) and |luzf] = O(gq‘ 1), the
first-order component of the eigenvector w is of (¢/{)2 order.
Therefore, the eigenvectors of weakly nonconservative defective
systems are strongly sensitive to modifications, whereas the eigen-
vectors of strongly nonconservative defective systems are mod-
erately sensitive. Thus eigenvector behave in opposite ways to
eigenvalues.

B. Critically Damped System
In this case m = 4; the expansion of the eigensolution is carried
out as follows:

h=2o+eik +eidy+O(ed) (262)
w = wo + s3w; +edw; + O(eF) (26b)

By applying the procedure previously illustrated, the following re-
sults are obtained:
wy = A.%Mg, + )\.2“2

Wo = Uy, wy = AUz,

2n

ENE

ao= (v Au)*, Ay = (vF Ay — vflidy) /403

where A; and A, are determined by the solvability conditions of
the £ and &% order perturbation equations. In Eq. (27) v, is the
(unique) proper left eigenvector, and W, is the (unique) solution of
the problem

(Ao — )\01)12)4 = )»‘l‘u4 — A1u1

uffby =0 (28)

By using Eqs. (26-28), four eigensolutions of the perturbed problem
can be found, one for each complex root A;. All of the eigensolu-
tions are generated by the unique (liigensolution of the unperturbed

problem. Modal sensitivity is of £2 order.

V. Numerical Results
The eigenvalue problem (16) is numerically solved for different
values of the parameters. Some numerical and perturbative solutions
are compared.

0.0
12 [
i l” 1 2 //.- 3 4
3.4 , ,
£ y //
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) \\\ '.\‘
~~ .
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© —-0.2 H \\ ‘.‘\
- 34 NN\
4 \\\ \.\\ 1.2
N N\
-0.3 p=1.222 \\\\\\
©=.8181 \\‘*
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~0.4 T T T , . ; .

a)

A. Damping Modification

Modifications of the damping coefficient only are considered first.
The analysis, besides having an intrinsic value, throws light on the
mechanism that makes the nonconservative system defective.

Starting from the defective system with parameters ¢, = 1/10,
no = 11/9, and ko = 9/11, and keeping u = po and « = kp
steady, the damping ¢ is varied in the interval [0, 0.2]; the locus A(¢)
obtained is illustrated in Fig. 5 by solid lines. When ¢ = 0, there
are four pure imaginary roots, conjugate in twos, corresponding to
the two natural frequencies of the uncoupled degenerate system.
When ¢ increases, the roots become complex, conjugate in twos,
until two double roots appear for { = ¢, = 0.1. In this condition
a bifurcation point occurs in the locus and, correspondingly, the
system becomes defective. When ¢ > {o, the roots again become
separated. A moderate sensitivity of the eigenvalues should be noted
around the bifurcation point; this is due to the comparatively small
value of £y, as already observed in the perturbation analysis.

The associated eigenvectors w(¢) are illustrated in Fig. 6 on
the complex plane; components w; and w; are velocities, compo-
nents w, and w, displacements, according to Eq. (4). When ¢ =0,
displacements and velocities of the two oscillators are uncoupled.
When ¢ increases, the components couple increasingly, but only
the lengths of the vectors vary, whereas the phase differences re-
main practically unchanged. When { = {o = 0.1, length and phase
differences in the two modes are identical, so that a unique eigenvec-
tor exists: the system has become defective. By further increasing
¢, the phase difference between w; and wy rapidly decreases in
one mode and increases in the other one, whereas the lengths re-
main nearly constant. Therefore the two oscillators tend to vibrate
in phase coincidence or in phase opposition, with small or large
decay of the response, respectively. Velocities w, and w, exhibit
similar behavior, the phase difference with respect to the associated
displacement remaining greater than /2. To conclude, eigenvec-
tors are markedly sensitive to modifications, according to perturba-
tion analysis.

It should be observed that the coalescence of the two eigenvectors
for { = ¢ has been made possible by the fact that x = «p and
u = . If, for example, « is slightly modified, 1« being kept fixed,
the loci A(Z; k) shown in Fig. 5 by dashed lines are obtained. Now
bifurcation does not occur [only Re() or Im(X) bifurcate], and the
system remains non-defective for all values of ¢.

It is interesting to note a common aspect of the three systems ex-
amined: for given k and 4 an optimal damping oy exists for which
the lowest exponential decrement || = |Re(A)] is a maximum. By
increasing ¢ over {oy, the amplitude decaying becomes paradoxi-
cally slower. Moreover, when £ is small, the smallest jo | corresponds
to the lowest frequency w = |Im(A)|, whereas the opposite occurs
when ¢ exceeds (about) Jop.

M)l

0.7 . . . . . . .
0.00 0.05 0.10 0.15 0.20

b)

Fig. 5 Eigenvalues vs damping modifications.
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Fig. 6 Eigenvectors vs damping modifications.

Re(w)

B. Mass, Stiffness, and Damping Modification

All three system parameters are perturbed according to Egs. (15).
If it is wished to maximize the sensitivity (at least for small &), A,
is first calculated by Eq. (22), accounting for Eqgs. (13) and (14) and
for the expression (not reported here) of matrix A,. It is found that

1
A= [Co(Kl — w1 +40)/2+0(53)]* (29)
By choosing k) = kg, it; = —fig, and & = &, then A, = /T, +
0(%o). In addition, Egs. (15) read
# = po(l—e), k = kp(l+¢), ¢ =G(l+) (30)
It should be noted that in the previous subsection y; = k; = 0 and
&1 = O0(&), and so it ensues that A; = O(¢p). Therefore a higher
sensitivity corresponds to modifications (30).

Figures 7-10 show the eigenvalues loci A (¢) for different values of
{o, obtained by varying ¢ in the interval [—0.1, 0.1]. Solid curves rep-
resent exact (numerical) solutions of problems (16), dashed curves
perturbation solutions (19a) or (26a), at the first or second order
of ¢!/™. Perturbative solutions have been obtained by numerically
evaluating the generalized eigenvectors, also for small ¢o; therefore,
Egs. (13) and (14) have not been used in the analysis.
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Fig. 7 Eigenvalues vs parameters modifications: underdamped sys-
tems.

Figure 7 concerns underdamped systems. It is seen that in the
whole interval considered eigenvalues are complex conjugate. The
curves exhibit singular points at ¢ = 0, which are bifurcation and
limit points with respect to &, simultaneously. Sensitivity is already
noticeable when ¢y = 0.04 and rapidly increases with ¢y, according
to the estimate A; = ,/Z. The second-order perturbation approxi-
mation is excellent in a large neighborhood or ¢ = 0.

‘When the damping increases (Fig. 8), still remaining below the
critical value ¢, sensitivity is magnified, but anew phenomenon be-
comes manifest. Indeed, the locus presents a secondary bifurcation
point for & = 0.005, where a couple of complex conjugate eigen-
values change into two separate real eigenvalues; thus, the modified
system belongs to a new family of defective systems. This behavior
obviously cannot be described by regular curves extrapolated from
the primary bifurcation point (i.e., from the unmodified system);
accordingly, the range of validity of the perturbation solution is lim-
ited. However, since the extrapolated eigenvalues loci intersect each
other near the primary bifurcation point, the possible occurrence of a
secondary bifurcation point is revealed by the perturbation method.
Every time this circumstance occurs, the extrapolation should be
repeated starting from a new regular point of the locus.

When the damping reaches its critical value (Fig. 9), the two bifur-
cation points, primary and secondary, coalesce. Sensitivity is much
higher and is described excellently by the perturbation solution. It
should be observed that however small the perturbations are, they
modify one or two couples of real eigenvalues in complex conjugate,
depending on the sign of &.
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Fig. 8 Eigenvalues vs parameters modifications: underdamped postbifurcating system.
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Fig. 9 Eigenvalues vs parameters modifications: critically damped system.
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Fig. 10 Eigenvalues vs parameters modifications: overdamped system.
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Fig. 11 Amplitude-decaying periodic motions of an underdamped os-
cillator.

In the case of the overdamped system (Fig. 10) it is seen that
when ¢ < 0, however small it is, real eigenvalues become complex
conjugate, whereas when ¢ > 0, they all remain real only if ¢ is less
than (about) 0.016; indeed a secondary bifurcation occurs at this
value of &, giving rise to a couple of complex roots. Considerations
similar to those made about Fig. 8 hold good.

An analysis of the effects of the modifications on the trajectories
is presented in Fig. 11. Starting from the defective system ¢ = 0.1,
parameters have been modified according to Egs. (30) by assum-
ing ¢ = 20.05. For the two modified systems some (numerical)
trajectories for both modes have been plotted on the configuration
variables plane [see Eq. (17)]. Curves should be compared with
those in Fig. 2, relative to the unmodified system. In all cases the
trajectories are strongly eccentric elliptical spirals, whose axes are
parallel to the g; and ¢, axis when & < 0 or form angles of &=z /4 rad
with them when & > 0. Consequently, when ¢ < 0, one component
prevails in each mode (Figs. 11a and 11b), and when & > 0, the two
components are roughly either in phase opposition (Fig. 11¢) or in
phase coincidence (Fig. 11d); in the latter case, motion decays very
slowly. The analysis highlights marked sensitivity of the trajectories.

VI. Conclusions

Free oscillations and modal sensitivities of a one-parameter
family of defective two DOF systems have been analyzed. In the
four-dimensional state space the systems have only two complex
(real) eigenvectors if slightly (heavily) damped or a unique real
eigenvector if critically damped; therefore the base needs to be
completed by generalized eigenvectors. The response is expressed
as a sum of complex exponential motions and mixed exponential-
algebraic motions. The trajectories are weakly attracted by the
proper eigenvectors. If the damping ¢, is undercritical, the distance
between trajectories and ?roper eigenvectors comes to be of order
¢o when the time is O(Z; °)

Small perturbations of order ¢ of the project parameters have next
been introduced. By applying a perturbation method, the eigenso-
lutions of the nearly defective system have been determined. Modal
sensitivities of &7 order in the underdamped or overdamped cases
have been found, whereas e? order sensitivity appears in the critical
case. The following qualitative conclusions have been drawn:

1) Lightly damped systems have moderately sensitive eigenvalues
and strongly sensitive eigenvectors.

2) Heavily damped systems have strongly sensitive eigenvalues
and moderately sensitive eigenvectors.

For given mass and stiffness ratios, an optimal value of the
damping has been found for which maximum amplitude decaying
occurs. '

The parametric analysis performed has shown that small pertur-
bations can give rise to real eigenvalues in the undercritical case
and complex eigenvalues in the overcritical case. Consequently, the
trajectories can be considerably modified by small perturbations.
Few examples have been given.

The analysis also shows that defective systems can be very dan-
gerous, since uncertainties or unavoidable imperfections can result
in theoretical and real behavior being very different.
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